Our paper titled “Federated learning-based semantic segmentation for pixel-wise defect detection in additive manufacturing” has been published in the Journal of Manufacturing Systems. The paper was co-authored by Manan Mehta and Prof. Chenhui Shao. Federated learning (FL) is an emerging machine learning (ML) paradigm which allows several participants (manufacturers) to collaboratively train a model while […]
Author: mananm2@illinois.edu

Paper on adaptive sampling for multi-task Gaussian processes published in JMS
Our paper titled “Adaptive sampling design for multi-task learning of Gaussian processes in manufacturing” has been published in the Journal of Manufacturing Systems. The paper was co-authored by Manan Mehta and Prof. Chenhui Shao. Multi-task learning (MTL) is a machine learning technique used to enhance learning performance in similar-but-not-identical tasks. However, the accuracy of MTL […]